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ABSTRACT
The homogeneous turbulence problem is formulated by first speci-
fying the multipoint velocity correlations or their spectral equiva-
lents at an initial time. Those quantities, together with the corre-
lation or sﬁectral equations are then used to calculate initial time
derivatives of correlations or spectra. The derivatives in turn are
used in time series to calculate the evolution of turbulence quantities
with time. When the problem is treated in this way the correlation
equations are closed by the initial specification of the turbulence
and no closure assumption is necessary. An exponential series which
is an iterative solution of the Navier-Stokes equations gave much
better results than a Taylor power series when used with the limited
available initial data. In general, the agreement between theory and

experiment was good.

INTRODUCTION
A basic difficulty in the usual analyses of homogeneous turbulence
is the closure problem; that is, the set of correlation or moment equa-
tions contains more unknowns than equations. The problem occurs, of
course, because of the nonlinearity of the Navier-Stokes equations

from which the correlation equations are obtained.l
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Although many approximations have been introduced into the corre-
lation equations (or equivalent spectral equations) in attempts to
obtain closure, those suggestions have varying degrees of arbitrarihess.
The analyses in Refs. 2 and 3, although based on definite physical
ideas, contain dimensionless constants which must be determined by
experiment. Those in Refs. 4 to 7, although somewhat more deductive,
have other difficulties. That. in Ref. 4, at least for the restricted
initial condition for which it has been worked out, sometimes gives
negative energies.8 The analyses in Refs. 5 and 6 give reasonable
results for moderately weak turbulence but become unduly complex for
high Reynolds numbers. That in Ref. 7, although it has yielded some
realistic deductions, also has computational difficulties because of
its complexity.

There is another way of looking at the problem of homogeneous
turbulence. In order not to lose sight of our goal we will first give
a statement of that problem. The statement given by Batchelor is
essentially this: given the statistical state of a homogeneous turbu-
lent field at an initial instant, to predict the evolution of the tur-
bulence (in probability) as a function of time. In order to completely
specify a turbulent field at an initial time, it is necessary to give
all of the multipoint velocity correlations or their spectral equi-
valents at that time,l It is not hard to show that, given these multi-
point correlations and the correlation equations, all of the time de-
rivatives of the turbulent energy tensor and of other pertinent turbu-

lence quantities can be calculated. These time derivatives can then be
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used in a series, for instance a Taylor series, to calculate the
evolution of the turbulent energy tensor (or of the equivalent energy
spectrum tensor) and of other turbulence quantities.

It is noted that when the turbulence is treated in this way, there
is no longer a closure problem. The correlation equations are used
only to relate the correlations at an initial time to their time de-
rivatives, and those correlations must be given in order to have a
complete specification of the turbulence at that time. Of course, in
practice only a small number of the correlations, and thus of their time
derivatives will ordinarily be available, but a sufficient number may
be known to give a reasonably good representation. It might be pointed
out that even in those analyses which regquire a closure assumption, the
turbulence should be specified initially by its correlations or spectra
since the correlation equations require initial conditions.

9

Kraichnan” hag very recently studied the convergence properties of
series such as those considered here. As mentioned in another paper by
that amthorlo, it is not necessary that an expansion be convergent in
order to be useful, since divergent series can provide excellent asymp-
totic approxiﬁations.ll

In the present paper we will not concern ourselves primariiy with
convergence questions but will use as a test the agreement with exper-
iment of the results. Although a Taylor series would no doubt give
good results if sufficient statistical information were availsble at

the initial time, it will be seen that an exponential series which arises

in a study of the nonlinear decay of a disturbance in a fluid12 is much
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more satisfactory when a limited amount of initial information is avail-
able. This is not surprising since the exponential series is an iter-
ative solution of the Navier-Stokes equations and thus contains informa-
tion which is not contained in the Taylor series. The resulting formu-
lation gives results which are in quite good agreement with the avail-

able experimental data.

INITIAL TIME DERIVATIVES AND SIMPLE EXPANSIONS

As mentioned in the introduction, if the multipoint correlations
are known at an initial instant, as they must be for a complete spec-
ification of the turbulence at that instant, then the time derivatives
of the correlations can be calculated from the correlation equations.
For illustrative purposes we will consider the derivatives of the turbu-
lent energy tensor E;Eg, where uy and ué are respectively
velocity components at the points P and P' separated by the vector
?z and the overbar indicates an averaged value. Then the first time

derivative of uius at t =1
’ 5

1 is given directly by the two-point

correlation equations” evaluated at t = tl:
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where the pressure-velocity correlations are given by

. = - (2)
6rk6r drkar

and & similar equation for (uip')t—t + The pertinent solution of
1

Eq. (2) isl
T 10
(3 B3 0 )t—t
= (pu') =& L L g
. — - . F)
o 3=ty Ir |-A _ g' 6siésk

B Y
where ug is the velocity at the point x" = x' - s, and the integrat-

ion is over all ‘g space. This solution is for an infinite fluid, for
which case the boundary conditions are that Eﬁg is bounded for

= 0 and zero for ?'= % . The quantity p is the density, v 1is
the kinematic viscosity and p 1s the pressure. A repeated subscript
in a Term indicates a summation, with the subscript successively taking
on the values 1, 2, and 3. The correlation equations are, of course,
derived from the Navier-Stokes equations. The quantity Eﬁzﬁg dt at
t=t, can be calculated from Egs. (1) and (2) if a:ag and the two-
point triple correlations are known st t=tl.

The second ﬁime derivative of ﬁ;ﬁg is obtained by differentiating

the two=point correlation equations and evaluating‘the result at tl.

This gives
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The quantity [(3/0t)(wuiur)], .  in Eq. (3) is obtained from the
three-point correlation equations” written for t=t; and T' = 7.

(The vector L separates the points P and P".) Thus
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where (pu'uﬂ) — is given by
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Similar equabtions are obtained for the other pressure-velocity corre-~
lations. The boundary conditions for Eq. (6) are similar to those for
Eq. (2); that is, iﬁ?ug is bounded for ¥ or ¥ =0 and zero for
Zorr'a w. Also, an expression for E(B/ét)(ﬁ—i-ﬁg'u;):'t:tl in Eq. (3)
is obtained by letting 2' = O instead of #' =% 4n Eq. (5). Thus,
if the turbulence is specified sufficiently well at t=tl that the
double, triple and quadruple velocity correlations are known,
J/Bt ) can be calculated. Similarly higher-order derivatives
are obtalned by considering four or more point correlatlons in the turbu-
lent field6. With the time derivatives of u,u’ known at t=t s &

173 : 1
Paylor series gives u, ué ag a function of time as
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A similar analysis cen be carried out in wave number space. For
instance, the energy spectrum function E, which shows the contribu-

tions &t various wave numbers to 'uiui/z, can be written as

OF 1 % 2
B = (E)t;tl + (3{) =ty (¢ - tl) + 5T (ggz)t=t (t - tl) + ...
1

where BE/Bt is obtained from the Fourier transform of the two-point

correlation equation (Eq. (9) in ref. 5) as

SE(e) . f %{ 2uco, (k) + 1, [¢iki(?) i ¢iki("?)]} w
A

where dA 1is an element of surface area of a sphere of radius K,
- ~%
Kk 1is the wave number vector corresponding to the spacial vector r,
and P54 and Psxcq “are respectively the Fourier transforms of uiu{

and 'uiuku;.,‘Extracting from the integral that portion which can be writ-

ten in terms of E, and setting the rest of the integral equal to T, gives
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g% =T - 2w (10)

Equation (10) is the well known scalar form of the two-point spectral
equation. The transfer term T produces energy transfer between wave
numbers and arises from the triple correlation-term in Eq. (1)

(with i=,j).l (Note that the pressure-velocity correlation terms in

Eq. (1) drop out for i=j.) The second time derivative of E is
2
(a E) (atr) 2<8E)
——o—— = - 2VK
2 3t/ 5t),
dt t=t, t=t, t=t,

T 2 2y2
= o= 2wS(T), .+ (2w)(E), _
(E_t)t—tl =t (Bl

The quantity (Bg/ét)t_t can be calculated from the two- and three-
V1

point spectral equations if the two~ and three-point spectral quantities

in those equations are known at t=t,. From Egs. (20, (23), and (24)

in reference 5 we obtain

, Sq .
- f f z(- 2w’ [iKk(Biik(;) = By %) )]
A -

Py
+f(ﬁijk’f3iju) dk' dA(x)

-> -
where K! is the wave number vector corresponding to r', d&k =

dKy dKg dKz, and Bijk and ﬁijkl .are respectively the Fourier
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transforms of uiuSuﬁ_ and uiujukug. If by analogy with the

procedure used for cbtaining Eq. (10), we extract from the integral

that portion which can be written in terms of spectral quentities

already defined; (E and T), we have’

_ =

) 2 A

St + 2wT = 2 £(B3 1300y 30 )K" GAK)
A -%0

where V is a quantity related to the three-point spectral tensors

B. .

i3k and 5ijkﬂ' More precisely we can say that V is & functional

of Bijk and Bijkﬂ’ since each value of V depends on values of

B.

.
. . ‘
1 41 and ﬁijkﬂ at all points of k' space. With Eq. (11), the

expression for (aeg/5t2)t_ﬁ becomes
=ty

>%R 2 2,2
(S;é)t=tl = (V)t=tl - b (T)tztl + (2w%") (E)t=tl (12)

The Taylor series for E then becomes

B (3, "\[(T)*Ftl ewfa),, - )

* 57 [(V%:tl - (D) <ew<2)2(m)t=t2‘] (6 - +)°

.. (13)
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Equation (13) was used in conjunction with available experimental

13

data at an initial time™ in an attempt to calculate the variation with
time of E and thus of E;E;. However, with the availasble initial
data ((E)éztl, (T)t~tl’ and (V)t=tl)’ reasonable results were not
obtained except at small times (Fig. 2). It thus appears that in order
to obtain good results by using a gimple Taylor series, initial
statistical information of much higher order than that which is avail-
able would have to be given. Thus, an alternative approach which makes
more efficient use of the initial statistical information and also

incorporates additional information from the equations of motion will

be considered.

A WORKABLE FORMULATION FOR THE DEVELOPMENT OF
TURBULENCE FROM A GIVEN INITIAL STATE

In order to obtain a more efficient means for calculating the
evolution of turbulence than by a Taylor series in time, we consider
an iterative solution of the Navier-Stokes equations similar to that
in Ref. 12. 1In addition to the initial statistical information and
calculated time derivatives we will then have information about the
form of the decay law from the equations of motion.

Although attention was confined to determinate initial conditions
in-Ref. 12, for the present purposes we can just as well assume the
initial velocity fluctuations to be random or turbulent. - Thus, we con-
sider a field of homogeneous turbulence to be made up of a very high
density of eddies or harmonic disturbances in wave number space. For

all practical purposes then, since the density of disturbances is very
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high, the spectrum of the turbulence can be considered continuous.

The velocity and pressure at any point in the field are given by

du, 2 (u,u, )

d%u; 19 Uk
_E-% -4 5——%11— 2= om Eg—;{f——-g;—k—— (16)
and

1 3% az(ukuz)

o Bx‘kéxk = - axkaxz (17)
The latter equation is obtained by taking the divergence of Eq.
(16) and applying the continuity equation.

From the spectrum of harmonic disturbances we arbitrarily select
two cosine terms with wave number vectors 'a and ?ﬁ Then, the

velocity associated with those disturbances will be

u; =&, cosg*x+b cosr X (18)

where the superscript cc on the velocity indicates that it depends
on two cosine terms. The results that follow would be the same if two
sine terms or a sine and a cosine term were considered. If u;c is
substituted for wu, in the right sides of Egs. (16) and (17), the
time variations of a; and bi plus additional harmonic terms are
obtained. If we then substitute that new expression into Egs. (16)

and (17), another expression containing still more harmonic terms is

obtained. In each approximation, the linear terms of the Navier-Stokes
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equations are considered as unknown and the nonlinear terms as known
from the preceding approximation. As shown in Ref. 12, continuation

of this process leads to

ce _ ct - . rd s! . —> N —>n
ug = E (Ai,k" cos K * X +Aj_,':? sin¥ K) (19)
e
K
where
c
. 2 . -bk,’q (t-tl)
Ai,? - aiaK3q_ © (20)
qa
and
. s
~bdy (%)
s' 5 ?,r 1
AE,E?"' ai,Eﬁr e (21)
T

Comparison of Egs. (19) to (21) with the first and second approxi-
mations in Ref. 12 shows that b%il = w® and b;il = wZ. Also, we
note that since the two harmonic components in Eq. (18) were selected
arbitrarily, expressionms similar to Egs. (19) to (21) will be obtained
for any other two components. But the nonlinear interaction of any
number of harmonic components can be expressed as the sum of the
interactions of pairs of components (Egs. (37) and (38), Ref. 12).

Thus u;, the velocity resulting from all the harmonic components will

be of the form of equations (19) to (21), and can be written as
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_ c - %.,s . R.D
u, = (Ai,?? cos + Ai,? sin (22)
<
where
2 ()

() _ () (et () et

AJ.,'R" Y A + 1,059 © ’ (23)
q
a#l

The summations in Egs. (22) and (23) will of course contain many orders
of magnitude more terms than those in Egs. (19) to (21). Since the

initial conditions are random, the quantities Ai R & and
b4

PR 3 b
1,K,Q
bT(?Rl are assumed to be random variables. The space-averaged value

H
of ui (no sum on i) is obtained from Eg. (22) by squaring, integrating
over a cycle, and using the orthogonality property of sines and cosines.

This gives
' 2 2
2 _ 1 c s
v = E ;2 (Ai,?) * (Ai,?) (24)

where
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()

In obtaining Eq. (25) the various a; g,q Vere assumed uncorre-
lated. According to Eq. (25), <(A§,E02> and <(A§J?)%> in Eq. (24)
have the same form, so that we do not need to carry along the super=-
seripts c¢ and s.

We want to obtain an averaged form of Eq. (25) which is a smoothed
function of the magnitude of the vector E? (but not of its direction).
In order to do that, we divide the interval of Kk = (KiKi)%/é over
which disturbances occur into a large number of small increments K.
The terms in jg; in Egs. (24) and (25) are divided into groups each of
which correspoﬁds to a particular /. (Note that while the magnitudes
of the various vectors lying in a particular MK are approximately
equal, their directions can of course vary.) The group of terms
corresponding to each A is then subdivided into groups in each of
which the values of the bi,?,q in i[; do not vary appreciably from

q;l
a value of bS(K). The;index s designates a particular increment

. : 2 .
in the values of the bi,?ﬁq' Also, for each s, ai,Eﬁq will have an
average value which we designate by <a§ E’>S . The summation E;
. 202
q

| q#l
in eq. (25), which applies to a particular Fi ‘is then replaced by

-2bs(i<)(t—tl)

Z\__\/nss(i)< a§’?>S(K) e

S
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which applies to a particular A, and where ns (i) is the number
2

of terms in E : which are assigned to the group s for the component
q
q#l

i. The~parenthesis on i indicates that there is no summation on that
subséript. Thén the avérage value of AiiK in the incrément fa''e bé-
: ?

comes (see Eq. (25)).

2
(B) @ (g e Y

: E Gf) '(i><a§,r<‘ >s <K>§"233(K)(t-t1) (26)

s

where nK is the number of terms in E : that lie in M.
q

a#l
The expression for u? (Eq. (24)) then becomes

2
— , -2yk~ (6=t )
ui = E :<a§,2’,1>('<) e :

K

+E(%K)(i) <a§»?>s('<) ]

S

(27)

To obtain an expression for the energy spectrum function E, we

note thatl
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%
1
5 uiui = E d& (28)
0
2 3 2
where uiui = ul + u2 + u3

Equations (27) and (28) then give

2
\f;dK E ,Kll,K l> 2‘"“(1;’tl)

- b (%~
() Egd 2
K/1

where there is now a summation on i. If &K is very small, we can

write, to a very good approximation,

-2w<2(;o-tl) -2b_(k)(t-t, )

E(k) = B(k) e + Eaﬁ(x) e (30)

S

Equation (30) gives the evolution in time of the energy spectrum func-
tion from an initial state which is specified by the B's and b's
in the equation.

As shown in the last section, if the turbulence is specified at

an initial instant, the time derivatives of E can be calculated at
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that instant by using the Fourier transformed correlation equations.
Thus, it is desirable to write the B's and b's in Eq. (30)
in terms of E and its derivatives at the initial time. That can be
done by evaluating Eq.: (30) and its time dérivatives at. t = ty
and solving the resulting system of equations for the B's and b's,

In what follows, we will first retain only two terms of Eq.
(30), sincé we evidently do not have initial experimental data avail-
able to evaluate the unknown functions in additional terms. (The
equation resulting from thé reteﬁtion of three terms will be con-

sidered later.) Equation (30) can then be written conveniently as

‘-QVKz(t~tl) -2b(K)(t-tl)

E = (E) (k) e + (1 - @) e (31)

t=tl
where O < C< 1.
For C =1 Eqg. (31) reduces to the well-known expression for

the final period of decay.l For the general case (C # 1) we could
determine € and b in terms of the first and second derivatives of
Eq. (31) for t=t; and then evaluate those derivatives by using the
two-point spectral equations (see Eqs. (10) to (12)). The following
procedure turns out to be simpler however. By substituting Eq. (31)
into the spectral Eq. (10) we get for the energy transfer term

-2b(t~t. )
T = 2(1 - C)(w" - 0)(E) ey, @ (et

-2b(t-t,) (32)
= (7). L ® |



20

Then

Sy, -2b(t-tl)
t=t, ©

g‘%F ) 2b(T)t=tl ""(5‘% (33)

Comparing the last two members of Egq. (33) and using Eq. (11) gives

o ety

b= VK - §T§7;:; (3&)

1

From Egs. (32) and (34) we have

2

(T)t-—-tl
c=1- : (35)
v E
( )t=tl ( )t=tl
Equations (31) and (32) then become
| 2
E = (E)t=tl c expE-QvK (t - tlﬂ
2 (V)t=t1
+ (1~ ¢ -2 - t -1 36
( ) exp{ -2 | vk 5157;:*; ( 1 (36)
and
1 » (V)tztl
T = (T), -2 w© - t -1 37
t=t, P v AT, . ( 1) (37)

From Eq. (11)
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(Mgt

- gmt—]? (t - ) (38)
ke

V= (V)t=tl exp{ -2 | w®

where C is given by Eq. (35).

Equations (36) and (37) were obtained by retaining two terms
on the right side of Eq. (30). We consider next a higher order
approximation in which three terms are retained in that equation.
if Eq. (30), with three terms retained, is substituted into Eq. (10),
we get for T

-2b. (t-t,)
T = 2B§(K2 -b)e S

-2b,(t~t )
&t (39)

2, 2
+ 2B2(K - b2) e
Equation (39) contains four unknown functions which are to be deter-
mined by the initial conditions. For that purpose we use Eg. (39)

and its first three derivatives evaluated at t=tl. Thus we obtain

e P2 2 1/2
- T,T, - TT3 T,T, - TT3‘] ) T, - TlTB // ,
b) = -~ 4 S 5 (40)
u(Tl - TTZ) M(Tl - TT22I u('.r.':L - TTQ)
_ 2 1/
b, - - Tng.- TT34 _ _ T, . T1:3 /é (1)
u(Tl - TTE) u(ml - TTQ)




22

2b2T2 + T

2 3
B, = = (k2)
1 .2, 2
l6bl(K - bl)(b2 - bl)
and
- 2b,T, + T3
By = =55 (43)
l6b2(K - 192)(b:L - b2)

where Tl’ T2 and T, are the first, second, and third time deriva-

3
tives of T at t=tl. The first derivative Tl‘ can be written in
terms of the functional (V)t=tl’ which gives a representation of
three point spectral quantities (Eq. (11)). Equations for higher
order functionals can be obtained by the procedure used for obtaining

Eq. (11) for V. Thus by using the four-point spectral egquations in

Ref.‘6 (Egs. (11) and (12)) we get

N 2wy 4R (i)

where R 1is a functional of three- and four-point spectral quanti-

ties. Similarly

S --2wR+s (15)

where 8 is a functional of three, four, and five-point spectra1¢

quantities. By using Egs. (11), (44) and (45), the first, second,
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and third time derivatives of T at t=t, in Egs. (40) to (43) cen

be written in terms of higher order spectral quantities as

T = - 2w (), (V). (46)
1 1
T, = (2VK2)2(T)t:tl - bP(V), + (B), (47)
1 1
and
T, = "(2"“2>3(T3t=tl + 3(2VK2)2(V)t=tl

- 6VK2(R)t=tl * (8 (18)

RESULTS AND DISCUSSION

A comparison between the experimental data of Uberoi13 and the
present theory (Egs. (36) to (38))“is given in Figs. 1 to 4.1% The
comparison is made for an initial time corresponding to X/M = 48 in
the experiment (ti = (v/N?)t = 0.001818), (X is the distance down-
stream from the grid and M is the mesh size of the grid) For the
initial specification of the turbulence values of E and T were
obtained from Figs. 5, 9, and 10 in Ref. 13. Initial values of V
were not given directly in Ref. 13 but were estimated from the decay
data for T and Eq. (11). Except for experimental error those values
will be the same as those that might have been measured directly.

The agreement between the predicted and experimental energy spectra
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for the same initial conditions (Fig. 1) appears to be quite good, con-
sidering the difficulty of the measurements. The calculation of the
experimental values of E required the differentiation of measured one-

dimensional spectra and an assumption of isotropy.

Predicted and experimental values for the décay of wujyuy are

i
plotted in Fig. 2. ..Thé& agreement. between theory and experiment is -
excellent for values of t* up to about 0.006. ,Note that spectra
were measured only for values of t* between 0.00182 and 0.00417).
Elimination of the moderate deviation for +*¥ > 0.006 might require a
higher order theory (more terms in Eq. (30)), together with additional
initial statistical information. Alternatively the deviation might be
due to the amplification at large times of slight inaccuracies in the
measured initial spectra. The theoretical values for t* lesébthan
0,00182 were calculated by working backwards from the measured initial
spectra. Also included in Fig. 2 is a Taylor series solution which :™
uses the same initial information as the exponential series, and the
curve for the weak turbulence approximation. Tt might be pointed out
that the curve for the weak turbulence approximation is not the -5/2
power decay law usually given for the final period,l but is the curve
obtained by using the measured initial energy spectrum and Eq. (31) with
Cc=1.

Spectra for the energy transfer term T are plotted in Fig. 3.
The experimental and theoretical curves are in good agreement except

near the value of k where (T) changes sign. The deviation there

results from a mathematical singularity in Eq. (37) when (T)t—t = 0.
—¥1

However, that deviation does not seem to be serious, because the real
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physical curve in that region can easily be estimated. This is particu-
larly true since it is known that the total area enclosed by the T
spectrum should be zero.l It appears likely that the difficulty could
be eliminated if another term were retained in Eq. (30). (More will be
said about that possibility in the next paragraph.) The deviation also
carries over to some extent into the results for E and EZE;. How=~

ever, if one does not use values of K close to the point where (T)t=tl

changes sign for calculating E and wu;u;, the inaccuracies in those
gquantities will be small. It appears that the overall agreement betweén
theory and experiment obtained by using equations (35) to (37) should be
considered encouraging.

For the sake of completeness, spectra of the functional V (Egs.
(11) and (38)), the third initial condition specified for the turbulence,
are plotted in Fig. 4. The agreement between theory and experiment is
probably within the uncertainty in estimating V from the decay data in
Ref. 13, except in the vicinity of the point where (T)t=tl changes sign.
Thus the theory predicts the evolution in time of E, T, and V, when
those quantities are specified at an initial time.

We have not been able to apply a higher order theory to Uberoi's
data, that is, to evaluate three instead of two terms in Eq. (30) by
using the initial data given in his paper. However, we can apply a
higher order theory to an analysis in Ref. 5, since for that analysis
we can, in effect, calculate as much initial information as is desired.
That analysis neglects guadruple correlation terms in the three-point
correlation equations and should apply, for a particular set of initial

conditions, at times somewhat before the final period of decay. The
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initial conditions, as well as values at later times, are given by closed
form equations in that analysis and thus are better defined than may be
possible in an experiment. For the present purposes, the analytical
results from Ref. 5 might in fact be thought of as experimental resﬁlts
in which the initial conditions are specified exactly. This is because
for the model chosen, the analysis is exact, and the i£itial conditions
used in both that analysis and the present theory correspond to (or are

a part of) that model.

The case considered here corresponds to Fig. 6 of Ref. 5. Values of
dimensionless E, T, and time derivatives of T for the initial specifica-
tion of the turbulence (£ = 0.002) are obtained from Egs. (40) and (39) in
Ref. 5. We can eliminate the time derivatives of T by introducing V
(BEq. (11)) and the higher order functionals R and S (Egs. (44) and (45)).
In the present case, those quantities will all be representations of corre-
lations of order no higher than the third, since terms involving correla-
tions of higher order than the third asre assumed negligible in the analysis
of Ref. 5.

Figure 5 gives a comparison between results for T calculated from
the present analysis and those from Ref. 5. The quantity J; is a con-
stant related to conditions at tg = =0,00633 in the equations of Ref. 5.
The starred quantities in Figs. 5 to 7 are the same as those in Figs. 1 to 4
if we let Jg = M3v2. As expected, when T is calculated from Eq. (37),
the agreement with Ref. 5 ig good except in the region where (T)t=tl
changes sign. However, when a higher order theory is used by retaining

three terms in the expression for E (two terms in expression for T) (Eq.

(39)) the agreement is excellent at all values of k. It might be expected
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that a similar improvement would be obtained in Figs. 3 and 4 if a higher
order theory could be used for comparison with the experimental data of
Uberoi.

Because of the good agreement obtained for T in Fig. 5, one would
expect the calculated energy spectra E +to also be in good agreement with
those from Ref. 5. Figure 6 shows that that is indeed the case. In order
to show the effects of energy transfer between wave numbers, curves for the
final period of decay (first term of Eg. (40) of Ref. 5) are also included
in Fig. 6.

Figures 7 to 9 show plots for the decay of the higher-order spectral
guantities V, R, and S. The agreement between the present higher order
theory and the results of Ref. 5 is very good. Thus by specifying the
initial conditions for E, T, V, R, and S, we can predict the evolution
in time of those quantities by using the present higher order theory. That
is, the required number of initial conditions is no greater than the number
of quantities whose decay we can predict.

CONCLUDING REMARKS

If a homogeneous turbulent field is specified at an initial instant by
its multipoint-velocity correlations (or their spectral equivalents), the
initial time derivatives of those quantities can be calculated from the
correlation or spectral equations. The development of the turbulence in
time can then be obtained by using those derivatives in a series such as
a Taylor power series. When the problem is formulated in this way, an
assumption for closing the system of correlation equations is not required,
since those equations are closed by the initially specified correlations or

gpectral quantities. A Taylor series expansion, however, did not give
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realistic results (except for small times) when the limited initial ex=-
perimental data were used. An exponential series (Eq. (30)), which is an
iterative solution of the Navier-Stokes equations worked much better with
the limited initial information.

In general, when the energy and transfer spectra and a quantity
related to three-point spectra were specified at an initial time, the
predicted changes with time of ‘those spectra, as well as .the. )
turbulent energy, were in good agreement with experiment. Since the pre-
diction of the changes of those spectra with time is evidently an essen-
tial part of the homogeneous turbulence problem, the results are encour-
aging.

A higher-order theory was given in which the above quantities, as
well as two additional higher order spectral quantities, were specified
initially. Very good agreement was obtained between the predicted decay
of all of those quantities and the results for a previous ahalytical model
(Ref. 5). For the present purposes the results for the previous model
might be thought of as experimental results in which the initial conditions
are specified exactly. Thus when the results from the present theory are
compared with either experimental results or the results of an "analytical
experiment," the agreement is good, and the number of specified initial
conditiong need be no greater than the number of quantities whose decay

we can predict.
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